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1. Items Completed During this Quarterly Period: 
 

Item # Task # Activity/Deliverable Title 

7 5 
Perform literature review activities to 
perform industry outreach. 

Document existing PIR prediction methods, 
limitations, and industry experience using PIR. 

8 2 Submit monthly updates on PRIMIS. Monthly Updates 

9 3 3rd Quarterly Status Report Submit the 3rd Quarterly Status Report 

 
2. Items Not Completed During This Quarterly Period: 
 
The project is currently on schedule. All planned tasks up to this point have been completed.  
 
3. Project Financial Tracking During this Quarterly Period: 
 
This information is included in the Internal Quarterly Report. 

 
4. Project Technical Status:  
 
Item #4, Task #4: Perform literature review activities to identify the state of the art 
The first sub-task of this project involves conducting a comprehensive literature review to support the primary 
goals of the project: build on the existing Potential Impact Radius (PIR) prediction framework for natural gas, to 
include hydrogen, and blended-gas pipelines. During the literature review, the team investigated studies detailing 
experimental programs, numerical analyses, and machine learning approaches. Further, the team worked with 
industry to understand the state of the art for gaseous pipelines. Over the last quarter, the team placed a particular 
focus on existing hydrogen and hydrogen/natural gas blended pipeline applications and experimental studies. 
These two elements help inform the design of a realistic and practical setup for future model validation. The review 
findings also highlight that most published research studies emphasize dispersion scenarios, with fewer studies 
addressing fire, explosion, or buried pipeline conditions. The team has initiated documentation of the literature 
review, with particular attention directed toward completing the assessment of numerical and machine learning 
approaches. This effort will continue into the next quarter.  
 
This section of the quarterly report includes a brief overview of hydrogen and hydrogen/natural gas blended 
pipeline installations and a summary of the literature available for experimental methods.  
 
Hydrogen and Hydrogen/Natural Gas Blended Pipeline Installations: 
To support the development of a PIR prediction framework for hydrogen pipelines, it is important to first 
understand the geographic context in which these pipelines operate. Figure 1 shows the hydrogen pipeline 
centerlines (in black) across the Texas Gulf Coast region, along with high population areas (in red). This highlights 
the proximity of hydrogen infrastructure to densely populated regions, reinforcing the need for accurate PIR 
estimation to support risk management and safety assessments.  
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Figure 1. Map Showing Hydrogen Pipeline Centerlines and High Population Areas in the Texas Gulf 

Coast Region. 
This map displays the hydrogen pipeline network in the Texas Gulf Coast region. The pipeline centerlines are 

shown in black, representing the routes the pipelines traverse. High population areas are indicated in red, 
providing a clear visualization of the pipelines' proximity to densely populated regions. This geographic context 

underscores the importance of accurate PIR estimation and risk assessment for hydrogen pipelines operating in 
areas where potential impacts could affect nearby communities. 

A map of hydrogen/natural gas blended pipelines does not yet exist, but trial applications are taking place across 
the U.S. Some cities, such as Corpus Christi in the Gulf Coast region, have been periodically supplying blended 
gas to the local distribution grid for decades when the hydrogen production in the area reaches a critical threshold. 
Further, Canada has several ongoing blended-gas local distribution grids in operation.  

Technical Review of Publications Supporting PIR Prediction - Analysis by Gas Type, Incident Scenario, and 
Research Approach: 
Over the last quarter, an extensive literature review was conducted to assess the current state of knowledge related 
to hydrogen, natural gas, and blended-gas pipelines. The review considered a range of factors from which the team 
developed a classification framework. This framework organizes the studies by the type of gas, incident scenarios 
studied (such as dispersion, fire, explosion, and whether pipelines are buried or aboveground), and the research 
approach used (experimental, numerical modeling, machine learning, or incident analysis). Figure 2 presents a 
summary of this classification framework. This structured approach ensures that the analysis covers the full 
spectrum of relevant studies and technical considerations necessary to inform the PIR prediction model. 
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Figure 2. Classification of Collected Publications Based on Medium, Scenario Type, and Research 

Approach. 
This figure summarizes the categorization of the collected publications used in this study. The classification is 

organized into three key aspects: medium type (hydrogen, natural gas, blended gas, and others), scenario type 
(dispersion, fire, explosion, buried, and aboveground pipelines), and research approach (experimental studies, 
numerical modeling, machine learning, and incident analysis). This framework provides a clear overview of the 

technical focus areas across the reviewed literature. 

In the current quarterly period, our work has primarily focused on reviewing papers that include the research 
approach “Experimental.” All medium types and scenario types were considered. So far, the team has collected 
52 publications related to experimental research on hydrogen, natural gas, or blended-gas pipelines. Table 1 lists 
the key components of each study, including the type of scenario, gaseous medium, and the study focus. The study 
is listed as “Experiment” if it was based on controlled experiments investigating safety impacts, or “Incident 
Analysis” if it focused on the study of past accidents.  

Table 1. Collected Publications for Experimental Research on Hydrogen, Natural Gas, or Blended-Gas 
Pipelines 

This table provides an overview of the collected publications related to hydrogen, natural gas, and blended-gas 
pipelines. Each entry includes the reference, the type of phenomenon studied (dispersion, fire, or explosion), 

whether the pipeline is buried or aboveground, the gas medium involved, and the study category, distinguishing 
between experimental research and incident analysis 

Reference Dispersion Fire Explosion Buried Medium Study Type 

Niu (2025) Yes No No No Hydrogen Experiment 

Zhang (2025) Yes No No No Natural gas (95.7% methane) Experiment 

Xu (2024) Yes No No No Hydrogen Experiment 

Jiang (2024) Yes No No No Hydrogen Experiment 

Zhang (2024) Yes No No Yes Methane Experiment 

Qiu (2024) Yes No Yes Yes Hydrogen Experiment 

Cheptonui 
(2023) 

Yes No No Yes Natural gas (85–95% methane) Experiment 

Research 
Categories

Medium Type

Hydrogen

Natural Gas

Blended Gas

Others

Scenario 
Type

Dispersion

Fire

Explosion

Buried 
Pipeline

Aboveground 
Pipeline

Research 
Approach

Experimental

Numerical 
Modeling

Machine 
Learning

Incident 
Analysis
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Reference Dispersion Fire Explosion Buried Medium Study Type 

Zhu (2023) Yes No No Yes 
Natural Gas  

The hydrogen mixing ratio 
varied from 0-30% 

Experiment 

Li (2023) Yes No No No 
Methane conc.: 4% to 25%  
Hydrogen conc: 1% to 7% 

Experiment 

Cai (2022) Yes Yes Yes No Methane Experiment 

Liu (2021) Yes No No Yes Natural Gas Experiment 

Gao (2021) Yes No No Yes Methane Mixture Experiment 

Yue (2021) Yes No No No Natural Gas Experiment 

Zhang (2019) Yes Yes No No 
Methane: 91.654 % 

Ethane: 5.423 % 
Experiment 

Shrivill (2019) No No Yes No 
Ethane, propane, methane, and 

Hydrogen 
Experiment 

Pu (2019) 
Hooker (2011) 

Yes No No No Hydrogen Experiment 

Cheng (2018) No No Yes No Natural Gas Experiment 

Houssin-
Agbomson 

(2018) 
Yes No No Yes Methane/Hydrogen Experiment 

Wang (2017) No Yes Yes Yes Natural Gas Experiment 

Wu (2016) Yes No No No Air Experiment 

Deepagoda 
(2016) 

Yes No No Yes 
50,000 ppm Methane and 

950,000 ppm Nitrogen 
Experiment 

Yan (2015) Yes No No Yes 
2.5vol% Methane 

97.5 vol% Air 
Experiment 

Lowesmith 
(2013) 

No Yes No Yes 
Test 1: 78 % NG, 22 % 

Hydrogen 
Test 2: Pure Natural Gas 

Experiment 

Mattei (2011) Yes No No No Hydrogen Experiment 

Grune (2011) Yes Yes No No Hydrogen Experiment 

Acton (2010) No Yes No Yes Hydrogen Experiment 

Lowesmith 
(2010) 

No No Yes No 
Various compositions of 
methane and hydrogen 

Experiment 

Royle (2007) No No Yes No 
Various concentrations used 
(methane, pure hydrogen, or 

mixtures) 
Experiment 

Knudsen (2006) No No Yes No 
Mixture of fuels (hydrogen, 

propane, methane) 
Experiment 

Inaba (2004) No No Yes No Natural gas and methane Experiment 

Hankinson 
(2000) 

Yes Yes No No Natural gas Experiment 

Acton (2000, 
2015) 

No Yes No Yes Natural Gas Experiment 

McRae (1995) Yes No No Yes Natural Gas Experiment 

Turner (1988) Yes No No 
Not 

specified 
Natural Gas Experiment 

Witkofski 
(1984) 

Yes Yes No No Hydrogen Experiment 

Hoff (1983) Yes No Yes Yes 
90 % Natural Gas, 4.4 % CO2, 

4.2% Nitrogen, 1.4% 
Hydrocarbons 

Experiment 

Burgess (1977) Yes No No No Water Experiment 

Guise (1967) No Yes No Yes Natural Gas Experiment 

Wang (2019) Yes No Yes Yes 
94% methane, 2.8 % ethane, 

remaining HC's 
Incident Analysis 

Wang (2019) Yes No Yes Yes 92.3 % methane Incident Analysis 
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Reference Dispersion Fire Explosion Buried Medium Study Type 

Zhu (2015) No No Yes Yes Crude Oil Incident Analysis 

Mishra (2015) Yes Yes Yes Yes Natural Gas Incident Analysis 

Wilkening 
(2007) 

Yes No Yes Yes Methane or hydrogen Incident Analysis 

Manninen 
(2002) 

No No Yes No Hydrogen Incident Analysis 

NTSB (2000) No Yes Yes Yes Natural Gas Incident Analysis 

Mniszewski 
(1994) 

No Yes Yes Yes Ammonium perchlorate Incident Analysis 

Jones (1993) Yes No Yes 
Not 

specified 
Natural Gas Incident Analysis 

Kulyapin 
(1990) 

Yes No Yes 
Not 

specified 
Natural Gas Incident Analysis 

Lewis (1980) Yes Yes Yes No Hydrogen and naphtha mixture Incident Analysis 

Jones (1952) Yes Yes Yes Yes Natural Gas Incident Analysis 

Watts (1951) Yes Yes Yes No Natural Gas Incident Analysis 

Elliott (1944) Yes Yes Yes No Natural Gas Incident Analysis 

The distribution of publications across different study types is illustrated in Figure 3(a), providing a summary of 
the types of research, such as experimental studies and incident analyses, derived from the detailed data presented 
in the table. Figure 3(b) shows the trend in publication counts over time, indicating a noticeable increase in 
research activity in recent years. This upward trend reflects the growing interest in pipeline failure scenarios, 
including studies focused on more realistic conditions such as buried pipelines. 

 

Figure 3. The Collected Publications: (a) Study Type (Category); (b) Number of Publications Per Year 
The analysis indicates that the majority of publications are concentrated in experimental studies, with a smaller 
but significant portion dedicated to incident analysis. Notably, there has been a steady growth in the number of 

publications over the past decade, highlighting a rising interest and research activity within this field. 

Furthermore, the publications were also sorted based on gas medium and incident scenario, as illustrated in Figure 
4. The left panel (4a) shows that the majority of the studies focus on natural gas, with comparatively fewer 
addressing hydrogen and blended gases, highlighting a research gap that reinforces the importance of this project’s 
focus on hydrogen and hydrogen-natural gas mixtures. Figure 4(b) summarizes the types of scenarios studied, 
including dispersion, fire, and explosion, with dispersion being investigated most. Additionally, a significant 
number of studies, 24 in total, specifically consider buried pipeline configurations, which underscores the 
importance of accounting for buried conditions in real-world failure scenarios. Recognizing this, the project team 
is exploring how to incorporate buried pipeline considerations into the experimental testing phase. A more concrete 
and detailed approach for this aspect is expected to be developed and presented in the next quarterly report or in 
future project stages. 
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Figure 4. Categories for Collected Publication of Experiment and Incident Analysis: (a) Medium 

Categories; (b) Scenario Categories 
The figure summarizes the distribution of studies based on gas type and scenario. The left panel shows counts 

across experimental studies and incident analyses for natural gas, hydrogen, blended gas, and others, 
dominated by natural gas. The right panel highlights that dispersion is the most studied phenomenon, followed 

by explosion and fire. Of these 78 studies, 24 focused on buried pipelines. 

In the next quarter, the team will continue and complete the literature review, with a focus on finalizing the 
assessment of numerical and machine learning approaches. Upon completion, all findings will be compiled into 
the final report for this phase. This effort will support the transition into the next phase of the project, which will 
focus on developing computational fluid dynamics (CFD) models and planning the corresponding experimental 
work to support model validation and further development of the PIR prediction framework. 

Item #5, Task #2: Submit Monthly Reports on PRIMIS – Monthly updates 
This quarter, three monthly updates were composed and uploaded to PRIMIS.  

Item #6, Task #3: 3rd Quarterly Status Report – Submit 3rd Quarterly Status Report 
This report is the third quarterly status report.  

5. Project Schedule: 
 
 The project is on schedule (Figure 5).  

 

Figure 5. Project Schedule   
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